Theta-Phi Stand and Muon Stand Control
for Fermilab Test Fixtures, Hera-Zeus, E790

Table of Contents

IPC-2100 Front Panel Use
IPC-2100 Front Panel Parameters
IPC-2100 Pin out on back of unit
IPC-2100 Wiring Notes
IPC-2100 RS422 Commands
IPC-2100 General Notes
IPC~-2100 Theta-phi stand settings
IPC-2100 Muon stand settings

WOOo~IRMaewho

=
o

Software Interface
GETDATA and SETDATA Commonality
GETDATA Interface —-
SETDATA Interface
GENDATA and GENDATA DIAG Programs
OPTO 147 and OPTO VAX Programs
OPTO AC31 Commands
0PTO AC31 General Notes
OPTO AC7 General Notes
QPTO Port General Notes
Interface Modules
Diagnostic Modules
Include files
Rebuilding

| o
[

[Py
%)

[y
[#3)

[
-9

=
=9

=
(%]

sy
G

[y
h

=
_p

=
[e2]

[
o

L)
o

Other manuals included:

Sg‘/aﬂg'uf’ PRICEDURE. FoR. meToR Co~rTRIL-
INTROL IPC-2100 POSITIONER OPERATIONS MANUAL
OPTO-22 AC3]1l INTELLIGENT INTERFACE ADAPTER
OPTO-22 ACT RS$232 TO RS422 ADAPTER CARD

"MOTOR CONTROLLER MANUAL

For more information contact:

Gary De Clute ' Dick Loveless

Lead Programmer Senior Scientist

UW-Physical Sciences Lab UW-Physics Department

3725 Schnieder Drive or University of Wisconsin
Stoughton WI, 53589 Madison Wi, 53705

(608) 873-6651 (608) 262-4767

HEPNET Email PSL::GWD or PSLC::GWD HEPNET Email WISHEP::LOVELESS
Bitnet Email GWDEWISCPSL Bitnet Email LOVELESSEWISCHEP

also
Theta—phi stand engineer: - Muon stand engineer:

Jeff Cherwinka Ken Kriesel

Mechanical Engineer Mechanical Engineer
UW-Physical Sciences Lab UWw-Physical Sciences Lab
3725 Schnieder Drive 3725 Schnieder Drive
Stoughton WI, 53589 Stoughton WI, 53589

(608) 873-6651 (608) 873-6651

HEPNET Email PSLC::JJC HEPNET Email PSLC::KRIESEL
Bitnet Email JJCEWISCPSL Bitnet Email KRIESELE@WISCPSL

Copyright (C) 1990, University of Wisconsin, Physical Sciences Lab.
Permission is given to make copies for non-profit research purposes.

ﬁ!"ﬁglo-—-—gl_\ 6/'4/0

IPC-2100 Front Panel Use

Refer to INTROL IPC-2100 _POSITIONER OPERATIONS MANUAL as needed.
0} To regain control of a locked up unit, cycle power on main chasis:

push emergency stop button in

pull emergency stop button out

press reset button

press run button
1) To move to a position:

press clear once (displays previous destination, if any)

press clear again (clears display, displays 0)

enter the sign (+ or ~), this is required!

enter the digits with optional decimal point and decimal digits

press enter to begin motion

(velocity of motion is set as a parameter via the front panel)
(acceleration is set as a parameter via the front panel)

2) To stop motion in progress:
press jog once (enters jog mode "J")
wait for motion to stop
press clear once (clears jog mode)
3) To home:

press home

You cannot home if the controller is waiting for a destination to be
entered via the front panel. If home button does not work, cycle power.

(you cannot regain control until homing is complete)

(velocity of home search is set as a parameter via front panel)

(velocity of home limit search is set as a parameter via front panel)
4} To jog:

press jog once (enters jog mode "J")
press up-arrow or down-arrow

Direction of arrow on arrow buttons does not always match the expected
direction of motion. Bach axis is different. _

(hold down the arrow key to continue jog as long as desired)
(velocity of jog is set as a parameter via the front panel)

5) To increment:
press jog once (enters jog mode "J")
press jog again (enters increment mode "i")
press up-arrow or down-arrow to increment in desired direction

(amount of increment is set as a parameter via the front panel)
(velocity of increment is set as a parameter via the front panel)

IPC-2100 Front Panel Parameters
Refer to INTROL IPC-2100 POSITIONER OPERATIONS MANUAL as needed.

k%k%% (Caution ****
Understand what these parmaters do before you change them!
Incorrect settings can result in damage to the motor or motor

controller, or can lead to electical or mechanincal failure.
hhkkRIk R AR A AL Ahk

To enter parameters:

press enter (unit will display CODE. 0)
enter 8788
press enter

To skip a parameter, press enter
To change a parameter, press clear, enter value, press enter
To exit press jog (display "J"), press clear

Parameters (in order of presentation) are:

PerP Percent of full speed when moving to a position

PerH Percent of full speed when searching for home switch

PerL Percent of full speed when final homing to home switch

ACCE Acceleration time in seconds (.01 to 6.0) to 100% speed

cc Constant of Calibration (2*%encoder counts per unit of measurement)
PerJ Percent of full speed when jogging™ -7 -

inpo unknown (always 0)

dry unknown (always 0)

in. amount of movement in one increment

Perl Percent of full speed when incrementing

Baud baud rate of RS422 line

Id.no. Ascii character which identifies this axis

D.C. display calibrator ((1/CC) * resolution of display)
dP.no. number of decimal points to display -

Notes:

The percentages of full speed can be 1 to 250 percent.

On Theta-Phi and Muon stands: Do not exceed 100%. Above 100%, the rated

RPM capacity of motors is exceeded, and mechanical and electical loading of
other components may alsc exceed specifications.

Acceleration time is measured in seconds to 100% speed (.01 to 6.0). Do not go
below 0.5 seconds without consulting Jeff Cherwinka, PSL Mechanical Engineer
(Theta-phi stand) or Ken Kriesel, PSL Mechanical Engineer (Muon Stand). Do not
go above 1.5 seconds without consulting Gary De Clute, PSL programmer.

CC., D.C., and dp.no., control the display and unit of measurement.

On Theta-Phi and Muon stands: CC will eventually be calculated for lmm travel
on the surface of the loaded modules. D.C. is determined by CC. and Dp.no., and
should be set so that no more than 6 of the eight digits of the display are
used over the full range of motion.

Baud, and Id.no., control RS422 access. Baud cannot be higher than 4800. Baud
and Id.no. cannot be changed without changing other hardware and software.

Paramter in., is measured in units as displayed on the front panel. It can be
set to any convienient value. Parameters inpo and dLy are mysterious and should
always be 0.

TB1

B2

TB3

IPC-2100 Pin out on back of unit

Refer to INTROL IPC-2100 POSITIONER OPERATIONS MANUAL as needed.

-10 to +10 V D.C. reference {isolated)

2

8 gnd for reference (isolated)

1 optiocnal input reference frequency

2 in position

3 RXD RS232 (not available on our units)

4 TXD RS232 (not available on our units)

6 reset button (to activate: ground to
7 direction button {to activate: ground to
8 jog button {(to activate: ground to
9 home limit switch

10 home button (to activate: ground to
11 increment button (to activate: ground to
12 encoder channel A

13 + 5 V D.C. to encoder

14 encoder channel B

15 common gnd all control signals (to earth GND)
16 optional index marker from encoder

17 steps output (stepper motors)

18 direction output (stepper motors)

19 120 v A.C. Polarity is not relevant

20 120 v A.C. Polarity is not relevant

1 TXD + RS422

3 TXD - RS422

4 RXD + RS422

5 RXD - R§422

6 CoM RS422

(see below)
(see below)

(not used)
(see below)

(not used}
(not used)

earth ground)
earth ground)
earth ground)
(see below)

earth ground)
earth ground)

(see below)
{not used)
(see below)
{see below)

(not used)
(not used)

A

IPC-2100 Wiring Notes
Refer to INTROL IPC-2100 POSITIONER OPEf!ATIONS MANUAL as needed.
To reverse direction of motor
1) Turn off power.
On back of Introl IPC-2100:

2) Switch polarity of outputs to motor: Swap TBl pin 8 with TBl pin 2. Output
is isolated, so it does not matter if TB2 pin 8 is and earth ground, but do NOT
wire both TBl pin 8 and TBl pin 2 to earth ground. Only one of TBl pin 2 and
TB1 pin 8 can be earth ground.

3} Switch encoder channel A with encoder channel B: Swap TB2 pin 12 with TB2
pin 14.

4) Restore power, motor should now run backwards from previous orientation.

IPC-2100
For incremental encoders without marker pulse

When an incremental encoder has a marker pulse, the IPC-2100 will search for
the home switch, and will then back off and continue moving until it detects
the first marker pulse, which becomes the zero point. If there is no marker
pulse, this results in an infinite search. To fix this, wire as follows:

1) Jumper TB2 pin 9 to TB2 pin 16
(instead of hooking TB2 pin 16 to the incremental encoder)

2) An internal jumper inside the IPC-2100 must also be changed. It is jumper
J on the bottom board. It must be moved to EXT. It is necessary
to disassemble the IPC-2100 to reach this jumper.

IPC-2100
Behavior of push button hookups

Reset Reset IPC-2100

Home button Cause home, as from front panel

Jog button Causes jog, see direction button
Increment button Causes increment, see direction button
Direction button Determines direction of jog or increment

Direction button latches after jog or increment has begun, so it is not
necessary to continue grounding it after a negative motion is started.

Reset: when normal motion in progress: stop motion _
when stationary: clears position (position becomes 0.0)
when jogging: reset does not appear to affect jog
when incrementing: reset does not appear to affect increment

IPC-2100
Motion in progress alarm

We are using the "in position" line, TB2 pin 2 to control an audible alarm

which indicates that the motor is running. When motion is in progress, a relay
is actuated which sounds the alarm.

IPC-2100 RS422 Commands

Refer to INTROL IPC-2100 POSITIONER OPERATIONS MANUAL as needed.

The Id Number of the unit is a hexadecimal ascii value. Any ascii value can

be used. We will assume 41 ("A").

<esc> is the escape character (1B hex)

<sign> + or — sign

<position> a number with an optional sign and optional decimal point
{cr> carriage return (1D hex)

<1f> line feed (1A hex)

There is some question about what exactly is coming back from the IPC-2100:

<?> an unknown character (what it might be is indicated)

0) To regain control of a locked up unit, cycle power.

la) To move to a position with report of success:

send: <esc>A<position><cr>
immediate reply: A<position><crr>a<nul?>
at end of move: INPO.<cr><1f>

1b) To move to a position with no report of success:

send: <escrA<position>,<cr>
immediate reply: A<position><cr>

1c) Multi-axis move with report of success of last axis:

send: <esc>A<position>,B<{position><cr>
immediate reply: A<position),B<position><cr>B<nul?>
at end of move INPO.<cr><1£>

ld) Multi-axis move with no report of success:

send: <esc>A<position>,B<position>,<cr>
immediate reply: A<position>,B<position>,<cr>

2) To stop motion in progress:

send: <escrAJ<cr>
immediate reply: AJ<cr>

3) To home: can’t be done

4) To jog:
send: <esc>AJ<sign><cr>
immediate reply: AJ<sign><cr>
to stop send: S<er>
immediate reply: SINPO.<cr><1%>

5) To increment: can’t be done
6) To request current position:

send: : <esc>A?LCr>
immediate reply: A?INPO.<cr>A@<position><cr>

(echo)

(echo)

(echo)

(echo)

{echo)

(echo)

IPC-2100 General Notes
Refer to INTROL IPC-2100 POSITIONER OPERATIONS MANUAL as needed.

1) Lock up is freguent

If the introl fails to respond to commands from the front panel or via the
RS422 line, it may be "locked up". It is necessary to cycle power to regain
control of the unit. This appears to occur fairly frequently when the normal
operating parameters are exceeded or invalid commands are entered or sent to
it. Be cautious, therefore, when entering or sending commands. It is difficult
to damage the unit, but easy to lock it up.

2) Bench testing difficult

The IPC-2100 cannot be meaningfully bench tested apart from a servo system.
The most you can do is to make it assert an arbitrary positive voltage
{<_10 V) when told to move to a positive location, or to an arbitrary negative
voltage (> -10V) when told to move to a negative location. This can be tested
from the front panel and/or the via RS422. Use only very small positions (like
1.0). Measure the voltage across TBl pin 2 and TBl pin 8. To test any more, you
must place the IPC-2100 in a working servo system.

3) Documentation is poor

Much of what is known about the detailed behavior of the IPC-2100 has been
determined by calling Introl and/or through experimentation. In general, any
information originating from Introl should be tested before it is accepted as
correct.

4) Contact person at Introl
Ali shams (716) 434-6919, Fax: (716) 434-1911.

Introl is open 8:00-16:30 (Eastern time) MTWT, 8:00-11:30 Friday.
Ali is very helpful, and easy to reach.

AT

IPC-2100 Theta-Phi Stand Settings
Refer to INTROL IPC-2100 POSITIONER OPERATIONS MANUAL as needed.

Internal switch settings:

Do not mess with these settings!

Horizontal Axis Vertical Axis
SW1 3 on ' 3 on
Sw2 4 on 4 on
SW3 3,4,6,7 on 3,4,6,7 on

Front panel settings:

Understand these settings before you mess with them!

Horizontal Axis ' Vertical Axis
PerP 55% 95%
‘PerH 55% 95%
PerL 2% ' 2%
ACCE 1.0 1.0
cc 60 60
Perd 55% 95%
inpo (always 0) {always Q)
dLy (always 0) (always Q)
in, 5.22 9.36
PerI 55% 95%
Baud 4800 4800
Id.no. 41 42
b.C. 1.6667 1.6667
dP.no. 1 1

Notes:
PerP, PerH, PerJ, and Perl should all be the same,

ACCE should not be less than 0.5 or greater than 1.5. Consult Jeff Cherwinka
before lowering this value. Too small a value can result in excessive loading
when accelerating and deaccelerating. Consult Gary De Clute before raising this
value. Too large a value can result in overrunning a switch and encountering
the next switch (or perhaps the hard stop.)

CcC., D.C., and dP.no. depend upbn the units chosen to measure position. They
are currently set for motor revolutions. Eventually these will be changed
to represent 1 mm of travel on the surface of the installed modules.

Parameter in. represents an increment of motion. It should eventually be
set to lmm, or 5 ¢m, or 20 cm of travel on the surface of the installed
modules, depending upon the axis and desired use of the increment function.

Baud must be 4800. This is highest speed permitted. It must be coordinated
with the OPTO-22 AC31 board jumper settings.

Parameter Id.no. can be changed, but this must be coordinated with the software
interface. No two IPC-2100's at Lab E should have the same Id.no.

9
IPC-2100 Muon Stand Settings

Refer to INTROL IPC—ZlOO POSITIONER OPERATIONS MANUAL as needed.

Internal switch settings:

Do not mess with these settings!

Horizontal Axis Vertical Axis
swWl 3 on 3 on
SwW2 4 on 4 on
SW3 3,4,6,7 on 3,4,5,6,7 on

Front panel settings:

Understand these settings before you mess with them!

Horizontal Axis Vertical Axis
PerP 90% 920%
PerH 90% 20%
PerL 30% 30%
ACCE 1.0 ‘ 1.0
cc 60 60
Perd 90% 90%
inpo {always 0) (always 0}
dLy {always 0) (always 0)
in. 100 100
Perl 90% ' 90%
Baud 4800 4800
Id.no. 43 44
D.C. 1.6667 1.6667

dp.no. 2 2
Notes:
PerP, PerH, PerJd, and PerI should all be the same,.

ACCE should not be less than 0.1 or greater than 1.5. Consult Gary De Clute
before raising this value. Too large a value can result in overrunning a switch
and encountering the next switch (or perhaps the hard stop.)

CC., D.C., and dP.no. depend upon the units chosen to measure position. They
are currently set for motor revolutions. Eventually these will be changed
to represent 1 mm of travel on the surface of the installed modules.

Parameter in. represents an increment of motion. It should eventually be set to
Imm, or 5 cm, or 20 c¢m of travel on the surface of the installed modules,
depending upon the axis and desired use of the increment function.

Baud must be 4800. This is highest speed permitted. It must be coordinated
with the OPTO-22 AC31 board jumper settings.

Parameter Id.no. can be changed, but this must be coordinated with the'SOftware
interface. No two IPC-2100's at Lab E should have the same Id.no.

10
Software Interface

Refer to comments located in the various C modules as needed.

The theta-phi and muon stands have a software interface on the Motorola 147

computer. The higher levels of this interface are beyond the scope of this

manual, as is the connection of the Motorola 147 and the VAX/VMS computers.

This is how it works:

1) A "setdata" or "getdata" request is generated in some manner on some
computer. The request makes its way (if necessary) to the Motorola 147,
and a process is forked (if necessary) to service the request. Some
requests are generated directly on the 147. When using the diagnositic
programs, the request are generated on the 147 and no forking is done.

2) The process which will service the reguest will call one of four functions
which will perform the operation: ‘

getdata_thph getdata muon setdata_thph setdata muon
3} A status value is returned by these functions, which makes its way back
to wherever the request originated, along with any "getdata" parameters that
were requested ("setdata" does not return parameter values).

The "getdata" and "setdata" parameter lists are very general in nature, and
all have the same form:

(systype,cardtype,address, func,numvals,data).

The values of interest here are:

char systype[5]; "muon" or "thph"

char cardtype[9]; "IpPC-2100"

int address; (specially encoded) :

int func; (different for setdata and getdata)
int numvals; (depends upon func)

float datalnumvals];
The interface consists of two libraries: introl.l and opto.l:

Introl.l consists of all routines needed to perform setdata and getdata

for the muon or thph stands, using the opteo.l library routines. Most details
of the RS422 chain and the opto boards are hidden from the introl.l routines.
The exceptions are obvious and have been noted elsewhere.

Opto.l consists of all routines needed to communicate with an OPTO AC31
board on an RS422 chain leading from a serial port on a Motorola 147
computer running the 0S/9 operating system. Opto.l could be expanded to
allow communications with other opto board types. Nothing in opto.l is
specific to the introl controllers.

Using the interface:

An applicationIprogram_required to service getdata and/or setdata calls for
the muon and/or thph stands, should make the desired calls noted above, and
link to the two libraries noted above. Then simply fork or run the program.

The only caveat to this is that the program HWC 0OS9 must have been run at least
once since booting the 147, in order that certain required "events" be created.
If this requirement cannot be met, see link gendata diag.sh for an example of
how to link in such a way that the "events" can be Tircumvented. If you do
circumvent the "events", one and only one program can be running that
communicates in any way with the OPTO RS422 chain!

11
GETDATA and SETDATA Commonality

Refer to comments located in the various C modules as needed.

The following are commonalities in getdata and setdata calls to control
the muon or thph stands.

Systype: either "muon" or "thph".

The systype names can be changed by editing introl sanity.h and rebuilding.
Software elsewhere in the system may also need to be changed.

Cardtype: always "IPC-2100".

The cardtype name can be changed by editing introl sanity.h and rebuilding.
Software elsewhere in the system may also need to be changed.

Address: a longword divided into 4 bytes (from lowest to highest):

INTROL 1 Introl Id.no. of primary axis

INTROL 2 Introl Id.no. of secondary axis
OPTO_UNIT Opto address of AC31 board

OPTO_PORT Serial port number of line to opto boards

INTROL 1 (primary axis) must be non-zero.

If systype is "thph", a non-zero INTROL 1 or INTROL 2 must be 41 or 42 (hex).
If systype is "muon", a non-zero INTROL 1 or INTROL 2 must be 43 or 44 (hex).
In any case, INTROL 1 and INTROL 2 cannot be the same.

The required values of INTROL 1 and INTROL 2 can be changed by editing
introl sanity.h and rebuilding. Note that If these required values are to be
changed, the programmed Id.no. of the introl controllers must be changed to
match the new values. Software elsewhere in the system may also need to be
changed.

OPTO UNIT must fall betweén 0 and 8.
OPTO_PORT must fall between 1 and 3.

The limits of OPTO PORT and OPTO UNIT can be changed by editing opto_sanity.h
and rebuilding. Note that even though these define the acceptable ranges, only
one OPTO PORT can be functional, and only one OPTO UNIT works for the muon
stand, and only one different OPTO UNIT works for The thph stand. To change any
of these values requires changes in hardware and software.

Example: to control both "muon" axes:

Opto port of 01 (hex)

Opto unit of 02 (hex)

Introl "D" is secondary axis, 44 (hex)
Introl "C" is primary axis, 43 (hex)

Address is: 01024443 (hex)

Example: to control a single "muon" axis:
Opto port of 01 (hex)

Opto unit of 02 {hex)

Introl "C" is axis of interest, 43 {(hex)

Address is: 01020043

12
Data:
All setdata and getdata data items related to the thph or muon stands are of
the following two types:

A position (an incremental- encoder reading or an introl target position):

Positions are signed floating point numbers. Accurate to within about .1.
Units are in shaft revolutions of the motor. The zero point is located

with the "home" switch. Note that units may change depending upon the constant
of calibration and display calibration setting of the IPC-2100.

An accuracy (measured in units of introl target position counts):

Desired accuracies are positive floating point numbers in the range 1.0 and
greater. Accuracies of less than 1.0 are impractical. Accuracies greater than
10.0 are risky in that they could allow a significant error to escape
detection. Default accuracy is 3.0. Note that units may change depending upon
the constant of calibration and display calibration setting of the IPC-2100.
The default value is adequate for most purposes.

GETDATA Interface
Refer to comments located in the various C modules as needed.

int getdata_thph(sYstype,cardtype,address,func,numvals,data);
or
int getdata muon(systype,cardtype,address,func,nunvals,data);

char systypel5]; "muon" or "thph"
char cardtypel[9]; "IpC-2100"

int address;

int func;

int numvals;

float datal];

Function codes and return valuesg:

Func Operation
1 Return incremental encoder position of axis
11 Return incremental encoder positions of two axes
Func Numvals Data
1 1 .~ [1] Incremental encoder reading of primary axis
11 2 [1] Incremental encoder reading of primary axis

_ [2] Incremental encoder reading of secondary axis
GETDATA timing:
Func

1 2.3 seconds to read position of one axis
11 4.6 seconds to read position of two axes

13
SETDATA Interface

Refer to comments located in the various C modules as needed.
int setdata thph(systype,cardtype,address, func,numvals,data);

or
int setdata muon(systype,cardtype,address,func,numvals,data);

char systypei5]; : "muon" or "thph"
char cardtypel9]; "IPC~2100"

int address;

int func;

int numvals;
float datall;

Func Operation
2 Move a single axis to an incremental encoder position, wait for move
3 Move a single axis to an incremental encoder position, do not wait
4 Halt motion on a single axis

12 Move two axes to incremental encoder coordinates, wait for move

13 Move two axes to incremental encoder coordinates, do not wait

14 Halt motion on two axes.

Function codes and set values:

Func Numvals Data
2 1l or 2 [1] Incremental encoder target for primary axis
[2] Primary axis positioning accuracy (optional)
3 1 [1] Incremental encoder target for primary axis
4 0 none
12 2 or 4 [1] Incremental encoder target for primary axis
[2] Incremental encoder target for secondary axis
[3] Primary axis positioning accuracy {(optional)
[4] Secondary axis positioning accuracy {optional)
13 2 {l] Incremental encoder target for primary axis
{2] Incremental encoder target for secondary axis
14 0 none

SETDATA timing:

Func
2 5.5 seconds to start motion on one axis
6.3 seconds polling interval
6.3 to approximately 18 seconds to detect end of motion
12 5.5 seconds to start motion on two axes
8.6 seconds polling interval
8.6 to approximately 30 seconds to detect end of motion
3 5.5 gseconds to start motion on one axis
13 5.5 seconds to start motion on two axes
4 4.2 seconds to halt one axis
14 4.2 seconds to halt two axes

14
GENDATA and GENDATA DIAG Programs

Refer to comments located in the various ¢ modules as needed.

These two programs are available to "generate" getdata and setdata calls
for the muon and thph stands. To use:

chd /h0/hwc/introl
run gendata or
run gendata diag
The program prompts for getdata or setdata.

The program then prompts for each parameter of the call to be generated,
in the order the parameters occur in the parameter list.

After all parameters have been entered, the parameters are displayed, and the
call is made.

Status is displayed as well as any return parameters from a getdata (setdata
has no return parameters.)

OPTO 147 and OPTO_VAX Programs

These two programs are available for directly communicating with the Introl
controllers via an OPTO-MUX AC31 board.

The RS232 port of the OPTO AC7 board must be attached to a serial port of the
machine in question, and the serial port must be properly configured. The AC3l
must be attached to the RS422 chain leading from the AC7 board.

On the 147, use OPTO 147.C (The opto port is /T1, recompile to change this.)
On the VAX, use OPTO VAX.C (The opto port is RRB4:, recompile to change this.)

‘Examples of using OPTO 147 or OPTO VAX programs:
Agsume the OPTO AC31 is at opto address 03 and introl "C" is of interest.

To tell introl to move to 567.3

>03B !Reset opto AC31
A !Reply is A
»035\x1BC567.3\¢ 18end <esc>Ch67.3<cr> to introls
A IReply is A (chars sent)
>03R !1Get num chars waiting
A0007xx 17 characters are waiting
>03N7 !Read 7 characters
AC567.3xx !Reads echo from introls
etc...

To read position from introl
>03B !Reset opto AC31
A !Reply is A
>038\x1BC\r 18end <esc>C?<cr> to introls
A IReply is A {chars sent)
>03L !Read string from introls
AC?INPO.xx tReads echo and INPO.
>03L !Read string from introls
A@ 567.34xx !Introl reports position

You have to play around with this for awhile to get used to it. See the
sections titled OPTO AC31 Commands and IPC-2100 RS422 Commands for more
details. Keep in mind that all commands and replies to/from the Introls are
imbedded inside commands and replies to/from the AC31 board.

15
QPTO AC31 Commands

Refer to the OPTO-22 AC31 INTELLIGENT INTERFACE ADAPTER manual as needed.

This is VERY brief summary of the AC31 command language and how to use it
to communicate with the introls. See the OPTQ AC31 manual for details.

All opto commands must be proceeded by >xx where xx is the hex opto address of
the opto board. Opto commands must be terminated with a checksum and <cr>. The
checksum and <cr> are provided by the software. It is good idea to use the AC31
reset cg?mand prior to sending each command to the introls. This will clear the
AC31l buffers. :

Useful OPTO AC3l board commands are:

>XXA Power up clear (must be first command after power up)
>XXB Reset (also clears buffer from introls)

>xxL Read a string (terminated by <cr>)

>xxR Return number of chars waiting

>xxNxx Read number of chars waiting (or until <cr>)

>xXX8... Send to introls (... is any chars)

To send special characters to introls use the following:

To send . Use
<cr» \I
{esc> \x1B

Replies from the OPTO AC31 are of three forms:

1y A Indicates success, no further data.
2} Adataz? Indicates successs. Data is what is returned. ?? is checksun.
3) Nxx Indicates failure. Reason is coded into xx {hex).

Don’t forget, you must tell the OPTO AC31 board to send and read strings.
You cannot communicate directly with the introls.

Don't forget to send an <esc> as the first character of each command to the
introls. Use the sequence \x1B to represent <esc>.

Don’t forget to terminate each command to the introls with <cr>». Use
the sequence \r to represent <cr>.

The sofware provides checksum and trailing <cr> for each OPTO AC31l command,
~and strips off the final <cr> returned by the AC31 board. Program displays
the strings transmitted and received (with checksums). Checksum is checked
on all strings received.

16
OPTO AC31 General Notes '

Refer to the OPTO-22 AC31 INTELLIGENT INTERFACE ADAPTER manual as needed.
1) Inconsistancies in the documentation

a) The documentation claims that all replies from the OPTO AC31 will be of
two forms:

A<data><checksum><cr> where data in optional
or Nxx<cr> where xx is a two digit hex error code
In fact, there are three forms. The two above plus:

ALcr>

Which appears to occur whenever there is no data in the reply. The checksum
ig dispensed with in this case.

b) The instructions for setting group A jumpers depending upon whether the
AC31 is in the middle or end of the RS422 link are specific to the AC31.

Similar documentation for some other OPTO boards is not very clear. Trust
only the AC31 documentation for the AC31.

OPTO AC7 General Notes
Refer to the OPTO-22 AC7 RS232 TO RS422 ADAPTER CARD manaul for details.

The correct jumper settings on the AC7 were determined by trial and error
(mostly error.)

The AC7 board is completely transparent to the software.

OPTO Port Setup
Refer to the file /h0/startup for an example of this.
In the startup shell of 08/9, do not iniz and tsmon the opto port. If you

do, the port will not be available for the application to use. Apparently
all default value are adequate.

17
Interface Modules

Refer to the files located on /h0/hwc/introl as needed.

The software is located on /h0/hwc/introl and all files there are directly
related to the interface. For details please examine the code. Fairly
extensive comments have been provided. Information in this document may
become out of data. The code on /h0/hwc/introl should be considered correct
if inconsistancies between the code and the documentation are discovered.

GETDATA THPH.C and SETDATA THPH.C control the thph hardware system.
GETDATA MUON.C and SETDATA MUON.C control the muon hardware system.

Procedure call hierarchy:

I 14000} O Y [PRN— OPTO. L —emmee e
GETDATA_THPH.C———mn +
v
GETDATA MUON.C —> GETDATA INTROL.C ~———+
SETDATA THPH.C————— + I
v ! |

SETDATA MUON.C -> SETDATA INTROL.C -> INTROL.C -> OPTO_AC31.C -> OPTO_PORT.C
+-> OPTO_CHECKSUM.C

Exception: GETDATA INTROL.C and SETDATA INTROL.C call the routine
opto_port_init() in the module OPTO PORT.C. This is necessary to assure that
the opto port _init _call is made only once for each getdata or setdata process.
Also, the events manipulated by OPTO PORT.C must have been previously created
before any calls to these routines are made.

18
Diagnostic modules

Refer to the files located on /h0/hwc/introl as needed.

GENDATA "generates" a getdata or setdata call. These in turn generate the
appropriate getdata or setdata for the specified hardware system.

Use GENDATA for testing the thph or muon hardware systems while other optomux
activity is expected. The "events" created by HWC 0S9 must exist, which means
that HWC 0S89 must have been run at least once since booting the 147.

Example:
chd /h0/hwc/introl
run gendata

Use GENDATA;DIAG for testing thph or mudn hardware systems while other optomux
activity is not expected. The "events" created by HWC 0S9 are not needed.

Example:
chd /hQ/hwc/introl
run gendata diag

Procedure call hierarchy:

GENDATA.C —-=+--> SETDATA.C -—+--> SETDATA THPH.C ——> etc.

I |
| +-—> SETDATA MUON.C —-> etc.

|
+--> GETDATA.C -—+--> GETDATA THPH.C ——> etc.
: |
+~—> GETDATA MUON.C --> etc.

GENDATA DIAG.C —-> same as above but linked to opte port diag.r instead of
opto _port.r

Low level diagnotics:

OPTO_147.C can be used to directly communicate with any optomux board. (From
the VAX use OPTO VAX.C). The Opto AC7 must be attached to a serial port on the
computer from which the program is to be run, and the port must be properly
configured. The source of OPTO 147 (or OPTO VAX) may have to be modified
depending upon which port is usSed. OPTO 1477C should generally be set up and
ready to go. OPTQ VAX will seldom (if eVer) be used. These are primitive
routines designed to diagnose hardware problems. : '

Example (147):
chd /h0/hwe/introl
run opto 147

Example (VAX):
set def [declute.pro.daq]
run opto vax :

Include files

Refer to the files located on /h0/hwc/introl as needed.

GETDATA MUON.C, GETDATA THPH.C,
fortran.h
introl sanity.h

GETDATA INTROL.C
“fortran.h
introl sanity.h
opto sanity.h
getdata codes.h

SETDATA INTROL.C
fortran.h
introl sanity.h
opto sanity.h
setdata codes.h

INTROL.C
fortran.h
introl timers.h

OPTO_AC31.C
fortran.h
opto_timers.h

OPTQ_CHECKSUM.C, OPTQMPORTS.C
fortran.h

SETDATA MUON.C SETDATA THPH.C
{Fortran-like C code
!Introl sanity checks

!Fortran-like C code

!Introl sanity checks

!0pto sanity checks

!Function codes for getdata call

!Fortran-like C code

!Introl sanity checks

!Opto sanity checks

lFunction codes for setdata call

IFortran—-like C code
\Timers for introl routines

!Fortran~like C code

ITimers for opto routines

IFortran-like C code

19

Rebuilding
Refer to the files located on /h0/hwc/introl as needed.
The build shells are organized as follows:

build opto 147.sh
(creates opto 147 executable)

build all.sh
build opto.sh
cc opto_ac3l.c
cc opto_checksum.c
cc opto _port.c
cc opto_port diag.c
merge opto.sh
(creates opto.l)
build introl.sh
cc setdata thph.c
cc getdata thph.c
cc setdata muon.c
cc getdata muon.c
cc setdata introl.c
cc getdata introl.c
merge introl.sh
{creates introl.l)
build gendata.sh
cc gendata.c
cc setdata.c
cc getdata.c
link gendata.sh
(creates gendata executable)
link gendata diag.sh
(creates gendata diag executable)

To rebuild everything:
' build all.sh and
build opto 147.sh

To entirely rebuild specific librarys:
build introl.sh or
build opto.sh

To change only one module in a library:
cc "module’
link introl.sh or
link opto.sh

To link higher levels of software, link against:
introl.l and
opto.1l

To rebuild diagnostic programs (gendata, gendata diag}):
build gendata.sh
(note: this links against introl.l and opto.l)

To rebuild low level diagnostic program (opto 147):
build epto 147.sh -
(note: this does not link against the libraries)

_$25DUB34: [GWD.PRO.HWC.DAQ.V6 JKOTANSKI.COM; 2

$
$
$
$
$
$
$
$
$
$
$
$
$
$

set verify

Imail
mail
mail
mail
mail
mail
mail
mail
mail
mail
mail
mail

kotanski.txt zeus02::kotanski
build opto 147.sh zeus02::kotanski
opto T47.c zeus02::kotanski .
build opto.sh zeus02::kotanski
merge opto.sh zeus02::kotanski
fortran.h zeus02::kotanski
opto_timers.h zeus02::kotanski
opto_ac3l.c zeus02::kotanski

opto port.c zeus02::kotanski
opto_port diag.c zeus02::kotanski
opto_checksum.c zeus02::kotanski
opto.doc zeus02::kotanski

set noverify

3-SEP-1991 10:46 Page 1

/subj="0Opto AC31l files. Start of
/subj="build opto 147.sh, 1 of 10

/subj="opto T47.c, 2 of 10
/subj="build opto.sh, 3 of 10
/subj="merge opto.sh, 4 of 10
/subj="fortran.h, 5 of 10
/subj="opto timers.h, 6 of 10
/subj="opto ac3l.c, 7 of 10
/subj="opto port.c, 8 of 10
/subj="opto port diag.c, 9 of 10

/subj="opto checksum.c, 10 of 10
/subj="Description of Opto AC31 f

