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1.0 Introduction

This report documents buckling analyses performed to evaluate the feasibility of
designing the SDC vacuum shell using Isogrid geometry with a overall thickness
of 1.10 inches and stiffening rings spaced 45 inches apart. The following
presentation is contained in four sections and two appendices.

Section 2.0 is a description of the material properties, model geometry, and loading
used in the buckling analyses presented in this repori.

Section 3.0 presents calculations for the stiffening ring minimum area moment of
inertia following procedures outlined in the Compressed Gas Association Standard
CGA-341[2]. Aderivation for the ring minimum moment of inertia is presenied and
compared with the CGA formulae.

Sections 4.0 presents results from a parametric study of stiffening ring geometry
required to produce a critical buckling pressure of 30 psi. The siudy uses
equations suggested in NASA SP-8007 [3]for predicting external pressure buckling
of general orthotroptic cylindrical shells. The equations can be tailored for ring
stiffened shells; these are the forms used in this repori.

Appendix A is a copy of the relevant portions of NASA SP-8007 provided so the
reader can examine in detail the equations used in the study presented in Section
4.0.

Finally, Appendix B contains a C mgmz age listing of the code writle
to perform the numerical cor *apumi s required for the buckling ana
in Section 4.0. A sample dataset is aEQQ included.

1 by the author

enb
lysis presented

2.0 Modelling of the SDC Vacuum Shell

2.1 Material Properties

The vacuum shell structure is considered made from aluminum 2219-T851.
Properties for this material are taken from MIL-HDBK-5C [1] and are given in
Table 2-1 below.



Table 2-1. Properties for Al 2219-T851 (Room Temperature)

Young' Modulus 10.5 x 10° psi
Poisson’s Ratio 0.33

Weight Density 0.102 Ib/in®
Tensile Ultimate Strength 62,000 psi
Tensile Yield Stress 47,000 psi
Allowable Stress 15,500 psi

For buckling analyses only the value of Young' modulus is required.

The stiffening ring is assumed to be made from carbon-fiber reinforced plastic
(CFRP) with a Young's modulus value of 30 x 10°.

2.2 Model Geometry

Basic geometry for the vacuum shell was specified by Fermilab as presented in

Table 2-2 below.

Table 2-2. Basic Vacuum Shell Geometry

Shell Diameter 160 in
Shell Length 360 in
Ring Spacing 45 in

The lsogrid design geometry is g“&f@m below. See Appendix A in the Task 1 Report
for a discussion of the dimensionless parameters and computation of section
details.

Table 2-3. Isogrid Geometry

Node Spacing a 6.9000 in
Web Width b 0.0950 in
Flange Depth c 0.1100 in
Web Depth d 0.8300 in
Triangle Height  h 59756 in
Flange Width W 0.4500 in
Skin Thickness 0.1600 in



Table 2-4, lsogrid Dimensionless Parameters

o = bd/ht 0.0825
B 6.0161
o =dhit 5.1875
T = Cft 0.6875
w=wec/ht 0.0518

Table 2-5. lsogrid Section Parameters

Effective Area A 0.1815 in?/in
Flange Fiber Distance Cf  0.9400 in
Skin Fiber Distance Cs 0.1600 in

Shell Modulus E*  2.25x 10° psi
Bending Rigidity D 1.29 x 10° in-lb
Moment of Inertia | 0.0109 inYin
Extension Stiffness K 2.14 x 10° Ib/in
Weight Thickness te  0.2244 in
Effective Thickness b 0.181510n

Shell Thickness t 0.8486 in

@

2.3 Applied Loading

The only loading considered in the buckling analysis is an external lateral pressure
of 30 psi.
3.0 Minimum Stiffening Ring Moment of Inertia via CGA Standard

CGA-341 [2] requires that each stiffening ring have a minimum area moment of
inertia determined by either of the formulae:

| = 1.05 D° B/E, (1)

I = 1.38 D® B/E, 2)

where,



I is the required moment of inertia of the ring about a centroidal
axis parallel to the shell axis;

I’ is the required moment of inertia of the combined section of
ring and effective width of shell about a centroidal axis;

D is the outside diameter of the shell;
B is the stiffening ring spacing, and;
Eg is Young's modulus of the stiffening ring.
Substituting values from Section 2.0 into equations (1) and (2) vields:
I = 1.05 (160)° (45) / (30 x 10%
| = 6.4512 in*
and
I = 1.38 (160)° (45) / (30 x 10°%
I' = 8.4787 in",
To be honest, | am not clear on the source of these @(‘,@uaﬁ”@zw To satisfy my own
curiosity, | developed an equation for the minimum ring moment of inertia based
abi

on ring stability.

ability equation for a circular ring under external pressure was

p' =3 E, /(R b), 3)
were p’ is the exiernal pressure a@i“n@ on the ring, Ez and | have the same
meanings as above, R is the mean ring radius, and b is the effective width of the
ring. Using the expression, R = D/2, equation (4) becomes:

p' = 24 E, 1/(D° b). (4)

In the worst case, when the shell buckles all the pressure loading is carried by the
rings. In this case, pressure loading on each ring is given by:

p’ = p B/, (5)

where p is the external pressure.



When equation (5) is substituted into (4), and the result solved for the ring
centroidal inerlia, one obtains:

| = p D® B/(24 E}), (6)
or, using a value p = 30 psi,
| = 1.25 D® B/E,. (7)

This result can be compared to equation (1). As can be seen, the coefficient in
equation (7} is 19 percent larger that the coefficient in equation (1).

4.0 Ring Geomelry for a Given Critical Buckling Pressure

NASA SP-8003 [3] provides equations for computing the critical buckling pressure
for orthotropic cylindrical shells. Ring stiffened shells can be analyzed as a special
case of these @qu@ii@ ns. Appendix A is a copy of the NASA SP-8007 maierial
discussing the buckling equations used in this report; development of these
buckling equations follows from the work of Jones [5]. Appendix B gives a listing
of the compuier code developed to evaluate the buckling equations,

The model used in the analysis considered the lsogrid geometry given in Section
2.2 and shown in Figure 5.1. The stiffener ring is assumed to have the Q@@m@iry
shown in Figure 5.2. Resulls given in the table h slow use a ring spacing of /ﬂ’\
inches and a critical buckling pressure of 30 psi. Buckling pressure computed
using the equations in NASA SP-8007 includes a correlation coetficient reduction
factor of 0.75.

Shown in Table 5-1 are values for ring geometry as functions of ring height, cf.
Figure 5.2. The values in the table are: ring thickness (ip), ring width {wg), ring
cross-sectional area (Ag), and ring moment of inertia (I;) about the shell reference
surface.

These data were computed in the following manner. For each ring height, the
maximum allowable ring thickness was used to determine the minimum ring width
based on a ring-shell buckling pressure of 30 psi.

The ring geometlry presented in Table 5-1 are plotted in Figures 5.3 through 5.6 as
functions of ring height. It was desired that the ring height be kept to 1.1 inches.
However, even a ring height of 1.5 inches requires a ring width of 32 inches!
Consequently, greater ring eccentricity is needed to achieved the ring moment of
inertia required to provide stability. As seen from the data, or graphically in



Table 5-1 Ring Geometry vs. Ring Height

Height Thickness Width Area Inertia
1.50 0.40 32.00 12.80 16.81
1.75 0.65 8.10 5.27 8.61
2.00 0.90 3.48 3.13 6.26
2.25 1.15 1.87 2.15 517
2.50 1.40 1.15 1.61 4.59
2.75 1.65 0.76 1.25 419
3.00 1.90 0.53 1.00 3.90

Figure 5.4, the minimum required ring width decreases rapidly with ring height.
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Figure 5.1 Isogrid Geometry

Figure 5.2 Shell-Ring Section Geometry
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Appendix A

This appendix coniains selected pages from NASA SP-8007, "Buckling of thin-
walled circular cylinders”, that pertain to buckling analysis of orthotropic shells. The
equations discussed in this document were tailored for ring stiffened shell analysis
as presented in Section 4.0.
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SYMBOLS

sidiener and (ing arca, respeciively
extensional stiffness of isotropic sandwich wall
stiffener spacing

effective width of skin between stiffeners
coupling constants for orthotropic cylinders
coefficient of fixity in Buler column formula

Et®

wall flexural stiffness per unit width, -
1201 — u?)

transverse shear-stiffness parameter for isotropic sandwich wall,

bending stiffness per unit width of wall in x- and y-direction

3

respectively, D, = Dy =D for isotropic cylinder

modified twisting stiffness of wall; ny = 2D for isotropic cylinder

flexural stiffness of isotropic sandwich wall

S ——

ring spacing

Young's modulus

Young’s modulus of elastic core

reduced modulus

Young’s modulus of face sheet of sandwich

Young’s modulus of rings and stiffeners, respectively

secant modulus for uniaxial stress-strain curve

fangent modulus for uniaxial stress-strain curve

Young’s modulus of orthotropic material in x- and y-direction,

respectively
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extensional stiffness of wall in x- and y-direction, respectively;
Ly = Ey = %ﬁ , ij - HEL for isotropic cylinder

Young's modulus of sandwich core in direction perpendicular to face
sheet of sandwich

shear modulus

chear modulus of stiffeners and rings, resnectively

inplane shear modulus of orthotropic material

shear stiffness of orthotropic or sandwich wall in x-y plane; éxy =Gt
for isotropic cylinder

shear modulus of core of sandwich wall in x-z and y-z planes,
respectively

depth of sandwich wall measured between centroids of two face
sheets

moment of inertia per unit width of corrugated cylinder

moment of inertia of rings and stiffeners, respectively, about their
centroid

beam torsion constant of rings and stiffeners, respectively

buckling coefficient of cylinder subject to hydrostatic pressure,
pr 8% /a?D

buckling coefficient of cylinder with an elastic core subject {o lateral
pressure, pr’ /D

buckling coefficient of cylinder subject to axial compression,
Ny 92 [m? D or Ny®* [n* D,

buckling coefficient of cylinder subject to lateral pressure, N.yé??' [w* D
or Ny /n* D,

buckling coefficient of cylinder subjected to forsion, NXYQZ [7*D or
Nyy* /1D,

length of eylinder

bending moment on cylinder

bending moment at collapse of a pressurized cylinder

bending moment at collapse of a nonpressurized cylinder

twisting moment on cylinder

number of buckle half waves in the axial direction
WE  h
LI

axial load per unit width of circumference for cylinder subjected to

axial compression

viil
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circamferential load per unit width of;;circumfei*ence\“%for cylinder
subjected to lateral pressure '

shear load per unit width of circumference for cylinder subjected to
torsion

number of buckle waves in the circumferential direction

axial load on cylinder

axial load on pressurized cylinder at buckling

axial load on nonpressurized cylinder at buckling

pressure, usually critical preyssure

D
*Dq

ratio of bending moment on cylinder subjected to more than one

shear flexibility coefficient,

type of loading to the allowable bending moment for the cylinder
when subjected only to bending

ratio of axial load in cylinder subjected to more than one type of
loading to the allowable axial load for the cylinder when subjected
only to axial compression

ratio of external pressure on cylinder subjected to more than one
type of loading to the allowable external pressure for the cylinder
when subjected only to external pressure

ratio of torsional moment on cylinder subjected to more than one
type of loading to the allowable torsional moment for the cylinder
when subjected only to torsion

radius of cylinder

cell size of honeycomb core (see eq. 92)

skin thickness of isotropic cylinder; thickness of corrugated cylinder

effective thickness of corrugated cylinder, area per unit width of
circumference

face thickness of sandwich cylinder having equal thickness faces

skin thickness of kth layer of layered cylinder

facing-sheet thicknesses for sandwich construction having faces of
unequal thickness

coordinates in the axial, circumferential, and radial directions,
respectively '

o parameter; Lo /T for isotropic cylinder, 2% /10
curvature parameter, o \ﬂ - u* for isotropic cylinder, ZV}?{ \/ I—u

for isotropic sandwich cylinder

ix




7k

Zg,Zy

distance of center of kth layer of layered cylinder from reference
surface (positive outward)
distance of centroid of stiffeners and rings, respectively, from

reference surface (positive when stiffeners or rings are on outside)

buckle aspect ratio <£«(—2~>
wrm

correlation factor to account for difference between classical thec. 57
and predicted instability loads

distance of reference surface from inner surface of layered wall

increase in buckling correlation factor due to internal pressure

ratio of core density of honeycomb sandwich plate to density of face
sheet of sandwich plate

distance of centroid of kfh layer of layered cylinder from inner
surface

plasticity reduction factor

Poisson’s ratio

Poisson’s ratio of core material

Poisson’s ratios associated with stretching of an orthotropic material
in x- and y-directions, respectively

critical axial stress for a cylinder with an elastic core

axial stress

circumferential stress

shear stress

torsional buckling stress of an unfilled cylinder

shear stress in the x-y plane




4.3 Orthotropic Cylinders

The term “orthotropic cylinders” covers a wide variety of cylinders. In its strictest
sense, it denoies cylinders made of a single-orthotropic material or of orthoiropic
layers. It aso denotes iypes of stiffened cylinders for which the stiffener spacing is
small enough for the cylinder to be approximated by a fictitious sheet whose
orthotropic bending and extensional properties include those of the individual
stiffening elements averaged ouf over representative widths or areas. Generally, the
directions of the axes of orthotropy are taken to coincide with the longitudinal and
circumferential directions of the cylinder,

The behavior of the various types of orthotropic cylinders may be described by a single
theory, the elements of which are equations of equilibrium for the buckled structure,
relationships between force and moment resultants, and extensional and bending
strains. For cylinders of a single orthotropic material, it is generally permissible fo
neglect coupling between force resultants and bending strains, and between moment
resultants and extensional strains. The theory is then similar to that for isotropic
cylinders, For stiffened cylinders or for cylinders having orthotropic layers, however,
the neglect of the coupling ferms can lead to seriocus errors. For example, the inclusion
of coupling terms vields a significant difference in theoretical results for stiffened
cylinder configurations having stiffeners on the inner surface or on the outer surface,
The difference vanishes when coupling is omitied.
Theoretical and experimental results for stiffened shells are generally in better
agreement than those for unstiffened shells, The possibility of local buckling of the
cylinder between stiffening elements should be checked.

431 Axial Compression

A buckling equation for stiffened orthotropic cylinders in compression (ref, 20) is
given by:
A}.I A‘iQ /A\»l?)

Aai Paa Bas
o\ As Ay Ass
Mgy A




in which

= fmr\? - n\
A“ = hX (“;”) + ny (}*“) (38)
o=\ = fmw\? (39
A22 e Ey<r> + ny< Qm> )

— [(mm\*  — mmy* /n\*  ~ [n\*
Aaa = Dy (”@) ¥ Dy (?) (”““) "y

Ey ZCy (11)2 2ny <m77) 2 (40)
IO u.;, U S + PR, (R
2 r r r 2
N A T (41)
Ay Aoy <ny t ny> P
_ N2 . B AR .
Aoy = A = (Gy + 2Ryy) @W) LR m 42)
e Exy mr | & W> N <f LR } mr (n)? (43)
Ao o A A “xy T Ay 2 Ar

Values of stiffnesses to be used for various types of construction are given in Section
4.3.6. Prebuckling deformations are not taken into account in the derivation of the
equation. The cylinder edges are assumed to be supported by rings that are rigid in
their own plane but offer no resistance to rotation or bending out of their plane. The
equation can be specialized for various types of cylinders which have been treated
separately in the literature; for example, unstiffened or stiffened orthotropic cylinders
with eccentricity effects neglected (refs. 21 and 22), and unstiffened or stiffened
orthotropic cylinders with eccentricity effects taken into account (refs. 23 to 27). For
ring-stiffened corrugated cylinders, a similar but not identical theory is given in
references 28 and 29. For given cylinder and stiffener dimensions, the values of m and
n to be used are those which minimize Ny.

17
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The unusually large number of parameters in equation (37) does not permit any
definitive numerical results to be shown. For combinations of parameters
representative of stiffened shells, calculations indicate that external stiffening, whether
stringers or rings, or both, can be more effective than internal stiffening for axial
compression. (Generally, calculd‘tions neglecting stiffener eccentricity yield
unconservative values of the bucklmg load of internally stiffened cylinders and
conservative values of the buckling load of externally stiffened cylinders (ref. 23). An
extensive investigation of the variation of the buckling load with various stiffener
parameters is reported in reference 25. The limited experimental data (refs. 28 to 35)

v stiffened shells are in reagonably pood agreement with the thooioiical results for the

range of parameters investigated.

On the basis of available data, it is recommended that the buckling loads of cylinders
with closely spaced, moderately large stiffeners calculated from equation (37) be
multiplied by a factor of 0.75. Correlation coefficients covering the transition from
unstiffened cylinders to stiffened cylinders with closely spaced stiffeners have not been
fully investigated. While theory and experiment (ref. 34) indicate that restraint against
edge rotation and longitudinal movement significantly increases the buckling load, not
enough is known about the edge restraint of actual cylinders to warrant taking
advantage of these effects unless substantiated by tests.

For layered or unstiffened orthotropic cylindrical shells, the available test data are
qm‘io meager (refs. 36 and 37). For configurations where the coupling coefficients C
(Vj (xys and ny can be neglected, it is recommended that the buckling load bc
calculated from the equation

Nt o Dxy , Dy )
= O I Y
T DX X X/
L Exy
7’ ﬁx e’ _ Lx}/ ) , (44)
Ly A} e ——— ) ;}\y ﬁ 4 hyﬁ

G}\y

The correlation factor vy is taken to be of the same form as the correlation factor for
isotropic cylinders [eq. (5)] with the thickness replaced by the geometric mean of the
radii of gyration for the axial and circumferential directions. Thus

v o= 10901 (1 —e®) (45)

where

18
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432 Bending

Theoretical and experimental results (refs. 24, 29, and 38 to 40) indicate that the
critical maximum load per unit circumference of a stiffened cylinder in bending can
exceed the critical unit load in axial compression. In the absence of an extensive
investigation, it is recommended that the critical maximum load per unit circumference
of a cylinder with closely spaced stiffeners be taken as equal to the critical load in axial
‘compression, which is calculated from equation (37) multiplied by a factor of 0.75.

For layered or unstiffened orthotropic cylinders with negligible coupling coefficients,
it is recomumended that the maximum unit load be calculated by means of
equation (44) with « replaced by

v o= 10731 (1 —e9) (47)

where

(48)

4.3.3 External Pressure

The counterpart of equation {37) for stiffened orthotropic cylinders under lateral
pressure is given by

. Asy Agy Ass
p = {(49)
i Ay A
Ay Ap
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For hydrostatic pressure, the quantity n? shown in equation (49) is replaced by

24 L §ﬁ£>2
n%z<£

In the case of lateral pressure, m is equal to unity while n must be varied to yield a
minimum value of the critical pressure, but is not less than 2. In the case of hydrostatic
pressure, the value of m should be varied as well as n. For long cylinders, equation (49)
is replaced by

I S 74 (50)

If the coupling coefficients Ex» E"y, Exys and ny can be neglected, the critical
buckling pressure can be approximated by (ref. 22):

- o L

=3 lw o= w2
_s5-513 | Dy <thy hxy)

SRR oy
for
<\

Fquation (49) has been investigated primarily for isotropic cylinders with ring
stiffeners (refs. 41 to 43). For closely spaced ring stiffening, references 41 and 42 show
that the effectiveness of inside or outside rings depends on the shell and ring
geometries. Generally, for shells with values of Z less than 100, outside rings are more
effective than inside rings, while for values of Z greater than 500, the reverse is true. As
the ring geometry varies, the effectiveness of outside stiffening tends to increase as the
stiffness of the rings relative to the shell increases. Somewhat lower buckling pressures
are given by the extremely complex but more accurate theory of reference 44, but the
differences are not so significant as to warrant its use.

The experimental results for ring-stiffened cylinders described in reference 45 are in
reasonably good agreement with the theoretical results of equation (49). For cylinders
of all types, it is recommended that the buckling pressure calculated from
equation (49) be multiplied by a factor of 0.75 for use in design, as has been
recommended for unstiffened isotropic cylinders of moderate length.

o A O ROy oA 35% s




4.34 Torsion

The problem of torsional buckling of orthotropic cylinders has been treated in
references 22 and 46, which do not take coupling between bending and extension into
acbount, and in reference 47, which does. If coupling effects are negligible, the critical
torque of moderately long cylinders can be estimated from the relationship (ref. 22):

3
_ S EF TN
M ~ 21.75 Dy © \M"?tgw”“ T ©
y v
g
for
5 I
DyY (ExEy ~ Exy\” ¢
) (2o Ly, (54
Dy 12 byDX !

Reference 47, however, shows that coupling effects are quite important for cylinders
stiffened by closely spaced rings. For long shells, internal rings are generally more
effective than outside rings; for short shells, the reverse is true. In the absence of
general formulas or graphs to cover the entire range of parameters that should be
considered, the equations of reference 47 should be solved for each specific case
considered.

The test data of reference 48 are in good agreement with theoretical predictions but
are insufficient to provide an adequate test of the theory. It is therefore recommended
that theoretical critical torques be multiplied by a factor of 0.67 for moderately long
cylinders,

4.3.5 Combined Bending and Axial Compression

On the basis of theory (refs. 24, 29, and 38) and limited experimental data (refs, 28
and 29), a straight-line interaction curve is recommended for orthotropic cylinders
subjected to combined bending and axial compression. The critical combinations of
loading are thus given by

Re + Ry = 1 (55)
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436 FElastic Constants

The values of the various elastic constants used in the theory of buckling of
orthotropic cylinders are different for different types of construction.

=S- 4.3.6.1 Stiffened Multilayered Orthotropic Cylinders

Some widely used expressions for this fype of cylinder are:

§ _ . E Fohe

B N~ Tx P ’

; B 3 (), o
1

E LA
WWV_\/HM ] t K + ,,1 ...... } . ( 5 ’7}
[ Hxby /o d

Cxy = 2 <ny>k e (59)

. k Eole E.Ac

- = X i S*S S48

Dy = e I P 72> . + 7

A [t <} - MXMY)k <]3 k kZk 5 %5 (60)
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where the subscript k refers to the material and geometry of the kth layer of an
N-layered shell. See figure 7. A proper choice of the reference surface can make at least
one of the coupling coefficients vanish. For example, if A is taken as

Nyl
P e BT
1 *Mx:“y K k%k
A = X (67)
Exy

the coefficient Exy vanishes and if

N
E""\
}/:’”‘; (ny) k ik&k
A = e (68)
Gyy
the coefficient ny vanishes.
z

j K e
6 k \, e
Arbitrary MMMWWNW
reference ~—
surface 3

Figure 7
Multilayerad orthotropic cylindrical shell geomeiry




4.3.6.2 lIsotropic Cylinders with Stiffeners and Rings

For a cylinder consisting of a stiffened single isotropic layer and for a reference surface
at the center of the layer, equations (56) to (66) reduce to

_ Et EAq
Ey = +
" T v (69)
- Lt BrAr
E =g e el 70
v (70)

_ ukt

Tl = e (71
- XY ] M2 .
- Et

oy = 57 ””
D Bt ; ek + 72 Fshs (73)
, = 7% -

X 123 — u?) b b

: B Bl Eed o
5. o= -7 g

y 1)(1 i éuz} d ! d

re? Gglg Gyply o
Dyy = o (75)

6(1 + u) b d

N LA

C, = 7 .fibs (76)
- E:A; -
Cy =7t (77)
T‘éxy = "f{xy = 0 . (78)
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Appendix B

This appendix contains a C language listing of the computer code developed {o
evaluate the stability equations presented in NASA SP-8007. This program is
general in that both longitudinal and ring stiffening effects can be accounted for
when predicting critical lateral pressure. In this report, however, only stiffening ring
effects were included in the SDC vacuum shell buckling analysis. The last page
contains a sample dataset read by the program.



[ ik ool kel ol dededede dee el de el il el i el kel Rl kol e el ek
Compute Critical Buckling Loads of an Orthotropic Cylindrical Shell

Fartonfantentonlontoslonle clantasnta PPN DN PN SN SN P SN M TS ZTN PN T SN VT PIN)
Fodode e e ek S e A T e S e S el e W e ek e R e e e e e A e e e e e e ek e e A e e A e e e ookl AAA/

#include <stdioc.h>

#define MMAX 100
#define NMAX 50
#define PI 3.141592653589793e0

double Cx;
double Oxy;
double Cy;
double Dx:
double Dxy;
double Dy;
double Ex;
double Exy;
double Evy;
double Gxy;
double Kxy;
double L;
double R;

double all;
double al2;:
double al3;
double a22;
double a23;
double a33;

(arge,

koo ST T DU TN I ande
TR W R W W W R R

int arge;
char #%argv;

input (
axial (
lateral (
exit (

/%*%*%%%%/

axial ()

/*%******/

{
double «¢0;
double c¢f;
double fc;
double TFxy();

int m;
int mm;
int n;

double mnc = 1.0e+100;
int n;



double nx;

printf (Memeemmmne
printf ("Axial Buckling Load\n");
printf (feceerrrcnmnna e AD\RY)

for (m=1; m<=MMAX: m++) {
c0 = L/PI/m;
c0 = c0%cO;

for (n=4; n<=NMAX;, n++) {

nx

if (nx<ne) {
Nne = nNx;

fo = ne ¥ 2.0%PI*R;
mm =
nn = n;

)

%3d
%3d

printf
printf
printf

("Mmax:
("Nmax

(V?\.nﬂ ) ;

(axial)\n", MMAX);

cf = 0.75;

printf ("Correlation Coefficient.....

printf ("Axial Harmonics.............
printf ("Circumferential Harmonics...

printf

printf

("Critical
("Critical

)
Nst. o e

// odedededede *kkv‘cv‘c/
lateral (O

/A/;“C(vxk'lfzi‘z :‘c’?‘m‘f/

double c¢f:

double Fxy();

int n;

int T ;

double p;

double pc = 1.0e+100;

printf (Mererrmenr oo -\n");
printt (”Lareral Buckllng PV?S%UL@\O")
Printf (Mecemen e

for (n=2; n<=NMAX; n++) {
p =R ¥ I*‘Xy(l.(),(doub‘le)n) /n/n;
1f (p<pe) |

pec = p;
nn n;

(circumferential)\n",

c0 * Fxy((double)m, (double)n);

NMAX) ;

%12 .38\n", cf);

%12d%c\n™, mm, mm N B
#12d%c\n", on, nn R I
%12 . he (% . 4e)\n", fe)y:

%12 . e cf¥ne, ne);

(% . he)\o\n",

3

=-\m\n'") ;



}
cf = 0.75;

printf ("Correlation Coefficient..... %212 .38\n", cf);
printf ("Circumferential Harmonics... %12d%c\n", nn, nn==NMAX?'*’':’ ’');
printf ("Critical P.................. %12 .4e  (%.4e)\n\n", cf*pc, pc);

/****************/
double Fxy (m,n)
/e ke koo /
double m, n:

{
double c¢l;
double ¢2;
double ml;
double ml2;
double ml3;
double ml4:
double mnr;
double nr2;
double nr3:
double nréd:

ml = m*PI/L;

wl? = ml % ml;
ml3 = ml % ml2:
mld = ml?2 % ml2;

nr = n/R;

nre = nr ny

nrd = nr % nrl;

nrh = nrl % nrl;

all = BEx*ml2 + Gxy*nr;

a2 = By¥nr?2 + Gxy*mlZ;
a3d = Dx*mld + Dxy*ml2%nr?2 + Dy*nrsd + BEy/R/R + 2,0%(Cy*nr2 + Cxy¥*nl2)/R;

al? = (Exy + Gxy)*ml¥nyr;
ald = (Cxy + 2.0%Kxy)*ml#nr? + Exy*ml/R + Cx¥ml3;
a23 = (Cxy + 2.0%Kxy)*ml2*nr + Ey #*nr/R + Cy¥*nrd;

/**%*%%w*?X*%%%**%&%*%%%*****%****%
printf ("all: %lbde\n", *all);
printf ("a22: %Zlde\n", *a22);
printf ("ald3: Zlde\n", *a33):
printf ("al2: %Zlde\n", *al2):
printf ("alld: Zlie\n", %al3d);
printf ("a23: %lde\n", *a23);

*****k**************%%*****%**%%*%*/
cl = all * (a22%a33 - a23%a23)

- al2 * (al2%a33 - al3*a23)
+ al3 % (al2%a23 - al3*a22);

c?2

i

all*a22 - al2¥%al?2;



/sl ok ok de ok b ek ook
printf ("cl: %lde\n", cl);
printf ("c2: %lde\n", c2);

x%vw*xwik\"kf"kn")‘*k**********/

return( cl/c2 );

[ 5

/mxwxwww**
input ()
/RS /
{
double A;
double Ar:
double As;
double Br;
double Bg;
double &;
double El:
double E2;
double E3;
double Er
double FEs
double OGr;
double Gs;
double 1
double Ir:
double Ts:
double Jr:
double Js:
double mu;
double Zir:
double Zs;

double Thr;
double tr;
double wr;

scanf ("LEAF["\n]", &A );
scanf ("LEL*["\n]", &E );
scanf (YLEZ*["\n]", &I ):
scanf ("LEA*["\n]", &L );
scanf ("%E%A*["\n]", &nu);
scanf ("ZEA*["\n]", &R );
scanf ("LEA*["\n]", &As);
scanf ("ZEA¥["\n]", &Bs);
scanf ("ZEL*["\n]", &Es)
scanf ("%E%4*["\n]", &GCs)
scanf ("%EA*["\n]", &Is)
scanf ("VE/*[A\ 1", &Js)
scanf ("ZE%*["\n]", &Zs)
scanf ("LE%*["\n]", &AT);
scanf ("%E%4*["\n]", &Br):
scanf ("%E%*["\n]", &Er);
scanf ("LE%A*["\n]", &GCr)
scanf ("7E/“[A\n}" &Ir)



scanf ("%EZ*["\n]", &Jr);
scanf ("REAX["\n]", &Zr);

if (Ar==0.0) ({
scanf ("%E%*["\n]", &hr);
scanf ("%E%*["\n]", &tr);
scanf ("%REZ*["\n]", &wr);
}

printf (“m mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

printf ("Input Parameters for an Orthotropic Cyllndfjcal Shell\n");

printf ("w”ﬂ mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 4
printf ("L.... %12.4e\n", L );
printf (*R.... %12.4e\n", R );
printf ("\n"):

printf ("A.. %12 . 4e\n", A )
printf ("E.. %12 .4e\n", E )
printf ("1.. %12 .be\n", T );
printf ("Nu. %12,Ae\n", nu)
printf ("\n"

printf ("As. %12 . 4e\n", As);
printf ("Bs 212 . Le\n", Bs):
printf (¥Es. %12 . 4e\n", Esg);
printf ("Gs. %12 . 4e\n", Gs);
printf ("Is. %12 . be  Tg,vef: 4. 4e\n", Tg, Is+ls¥Zs®hs);
printf ("Js. %12 he\n', Js);
printf ("Zs, %12 . he\n™, Zs);
printt ("\n");

/% Single Tl ﬂng@ Ring

Y
- (“Singw@ ¥l ﬁn&@ Rzny\n”)
Fo(Memmenaonnn —\n")
prﬂEL ("he... %12. Qe\m” hyy:
princf ("tr... %12.4e\n", tr);

printf (“wr... %12.4e\n", wr);
printt ("\n");

Ar = wr¥tr,
Ir = Arttrdcr/12.0;
Jr = 0.0:

£ (hr>0.0)
Zr = hy - 0.5%tr;

printf ("Ar... %12.4e\n", Ar);

printf ("Br... %12.4e\n", Br);

printf ("Er... %12.4e\n", Er);

printf ("Gr... %12.4e\n", Gr);

printf ("Ir... %#12.4e Ir,ref: %.4e\n", Ir, Ir+Zr*Zr¥Ar);
printf ("Jxr... %12.4e\n", Jr);

printf ("Zvr... %12.4e\n", Z1);

printf ("\n");



Bl = E*A/(L.0-nu¥nu) ;
E2 EXT/(1.0-nu*nu) ;
E3 = 2,0%E%T/(1.04nu);

i

Ex = El + Es%As/Bs:
Ey = El + Er*Ar/Br;
Exy = El * nu;

Cx = Es*As*Zs/Bs;
Cy = BEr¥®Av*Zy/Br;
Cxy = 0.0;

Dx = E2 + Es¥Is/Bs + Cx*Zg;
Dy = E2 + Exr*lr/Br + Cy*Zr;
Dxy = E3 + Gs*Js/Bs + Gr¥Jr/Br;

Gxy = E*A/2.0/(L.04nu);
Kxy = 0.0;

i

S o o (RN L
printf ("Computed Parameters for an Orthotropjc Cyandthal Shell\n");
PrintE (Mercr o a e e e e AD\TT)
printf ("Ex.... %12 Le\n', Ex ):

printf ("Ey.... %12.4e\n", Ey ):

printf ("Exy... Z12.4e\n", Exy):

printf ("\n");

printf ("Cx.... %12.4e\n", Cx );
printf ("Cy.... %12.4e\n", Cy ).
printf ("Cxy... %12.4e\n", Cxy):
printf ("\n");

cE ("DxL .. B12.4e\n'", Dx )
“E ("Dy. .. %12 4e\n", Dy )
E("Dxy ... %12 4e\n", Dxry);
printf (*\n");

printf ("Gxy... %12.4e\n", Gxy);
printf ("Kxy... %12 4e\n", Kxy);
printf ("\n");
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: hr
tr -
COwWr

Br -

Er
Gr
Ir
Jr
VA

cylinder area (effective thickness for Isogrid)
cylinder Young’s modulus

cylinder area moment of inertia

cylindex length

cylinder Poisson’s ratio

cylinder radius

stiffener area

stiffener spacing

stiffener Young's modulus

stiffener shear modulus

stiffener centroidal moment of inertia
stiffener beam torsion constant

stiffener centroidal distance from reference surface (+ outward)

- ring

ring
ring
ring
ring

- ring

ring

- ring

ring
ring

area

spacing

Young's modulus

shear modulus

centroidal moment of inertia

beam torsion constant

centroidal distance from rveference surface (foutward)
height from rveference surface (+ outward)

flange thickness

Flange width
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