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ABSTRACT:Radial and axial decentering forces are calculated for four generie
test cases representing a range of distances between endplug and
coil. A coil installation within 1 inch of the magnetic center of
the iron is assumed. Two dimensional finite element models are
used. The technique of calculating radial decentering from a two
dimensional model is verified with three dimensional comparisons.
The results show that geometries with endplugs extending into the
bore of the solenoid produce large radial and axial forces, as
expected, with the radial forces being particularly high.
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Introduction

Imprecigsion in the placement of the solenoid within it’s return iron will
result in field asymimetries and subsequent forces in the axial and radial

directions. The purpose of this report is to calculate ﬁhese( g’or@@s for four of
the SDC solenoid/calorimeter generic test case configurations'”

Solenoid /Calorimetry Configurations

The four generic test case configurations are shown in Fig. 1. Case 0 has
a reentrant endplug which extends 40 cm. into the solenoid bore. Case 2 has
an endplug which ends 40 cm. outside of the bore. Case 7 is identical to Case
0 except that an annular region of the outer radius of the reentrant endplug
portion corresponding to approximately one tower has been eliminated to
increase the air between the endplug and coil. Case 9 is similar to Case 2,
except the endwall is now 1.23 m from the end of 2 current sheet which is
also shorter than that of the first two con
an iron-free coil,

igurations. Case 9 closely resembles

In all four cases the calorimetry is also the flux return, and is modeled as
1/4 in slots of air in two inch iron plates.

Analviical Approach

The finite element models of Ref. 1 were axisymmetric, and half-length,
and modeled the slotted air/iron endplugs exactly. This led to a large number
of elements. The modeling of the slots in three dimensions is prohibitive, and
smearing the B-H properties in a rational way to approximate the slots does
not seem possible in regions where the flux may travel either parallel or
perpendicular to the slots. Therefore, the existing 2-d axisymmetric models

were modified as described below to simulate off-center installation in the
magnet iron.



Axial Decentering

This calculation was made by first solving the model for a current sheet
of actual length. Then the current sheet was lengthened in the axial direction
a total of 2 cm. The axial compressive forces from each run, calculated by the
ANSYS program from the current density and the field solution, were
subtracted from each other to produce the net axial force difference. It was
assumed that the force increment at one end resulting from the lengthening of
the current sheet would be equal and of the same sign at the other end of
the solenoid where the current sheet was effectively shortened by a off-center
placement. So, the total axial decentering force was found by multiplying the
net axial force difference between the two models by two. This method has
been checked against the more precise calculation using a 2-d, axisymmetric

model of the entire length of the solenoid, and found to be within 5% of the
full length result.

Radial Decentering

This calculation was made by first solving the model with the current
sheet and iron in their radially centered locations. Then, another run was
made in which the iron was moved radially inward a total of 2 cm. The
difference in radial force on each coil element between the two runs was
caleulated. This force difference was then used to caleulate the radial
decentering force as detailed in Appendix A.

To verify this approach, the simplified solenoid/iron geometry of Fig. 2
was modeled in both two and three dimensions. The method just mentioned
was applied to the 2-d model (Fig. 3) to determine the radial force. The three
dimensional models allowed the actual displacement of the coil. The following
3-d models and methods were used in the verifications:

L. Difference scalar potential (DSP) coarse mesh of 1/4 of solenoid. This
model, shown in Fig. 4, was intended primarily to produce boundary
conditions for a more refined model of the coil region. The method of

virtual work, as internally performed by ANSYS, was used to calculate the
forces on the coil.

2. Difference scalar potential, refined mesh in region of the coil. This is
shown in Fig. 5. This model used the boundary conditions from the coarse
DSP mesh and the method of virtual work for force calculation.



3. Vector potential (VP) coarse mesh of 1/4 of solenoid. This is shown in
Fig. 6. This model was intended for used with a refined model in the

same manner as 1) and 2). The forces are available from ANSVS as
Lorentz forces calculated in each coil element.

4. Vector potential refined mesh in region of coil, shown in Fig. 7. This

model used the boundary conditions from the coarse VP mesh, and
produced coil forces as Lorentz forces.

5. Difference scalar potential with total energy difference. This method uses

coarse meshes of both a displaced and centered coil, and looks at the
energy difference between the two.

6. Vector potential with total energy difference. Same as 5} but with uses
the VP coarse mesh models.

The resulting forces are shown in Table I. Of the six methods used, the VP
and DSP refined methods give very similar results, and agree well with the
approximate 2-d method. The total energy difference technique fails, probably
due to the very small energy difference resulting from s 2 cm coil
displacement (about 1 part in 100000) which is too small to calculate with
sufficient precision. The DSP coarse model was never intended to provide
accurate regults, but merely boundary conditions for the refined DSP model.
The VP results are surprisingly similar between coarse and refined models,

Plots were made of the axial field component in the coil to compare the
various models. Fig. 8 shows the axial component at the coil mean radiug, as
calculated at the element centroid, for the case of a centered coil. The DSP
model shows considerable "noise”, probably due to the numerical integration
which is used to calculate the current source contribution to field. The 2-d
and 3-d vector potential methods agree well.

Fig. 9 compares the axial field at the coil mean radiug in the 3-d
displaced submodels to the axial field of the 2-d model with the iron boundary
moved in 2 cm. The close agreement between the 3-d vector potential and the
2-d vector potential indicates that the 2-d method of moving the iron
boundary produces accurate field results for the region of coil which has
displaced 2 c¢m toward the irom.

Comparison with CDF Calculations



The method of calculating radial forces from the 2-d models was applied
to the CDF solenoid, using a detailed model available from a previous

analysis. The resulting f@{ge was 5 tonnes/in, compared with 30 tonnes/in as
reported by R. Yamada )

This work suggests that the 2-d method is accurate enough for radial force
calculation,

Results

The radial and axial decentering forces as calculated by the described methods
for the four cases are given in Table II. A displacement of 1 inch from the
nominally centered position is assumed. Although the term decentering is used,
it is true that while all axial forces are decentering (force tends %o increase in
the direction of displacement), the radial forces for generic case 0 and 7 are in
fact centering forces. From the standpoint of design, there is no use in

distinguishing between centering and decentering: The coil must be held in itg’
as-installed location regardless.

Discussion

The largest forces occur for geometries where iron is close to the coil, as
expected. The extension of iron 0.4 m into the bore of the solenoid (Case 0
and Case 7) produces large radial forces. Case 2, with the iron terminated 0.4
outside the solenoid bore, shows much less sensitivity. Case 0 was run
primarily to determine if the deletion of the tower represented by Case 7 was
the primary cause of the large radial force; It was not. The sensitivity of the
radial force to the presence of iron in the solenoid bore argues for geometries
which avoid this feature, especially in view of the more massive support
structure reguired to resist the force.

References

1. Wands, B.,”Magnetostatic Analysis of Several SDC Solenoid /Calorimeter
Configurations”. SDC Solenoid Design Note #138, March, 1991.

2. Fast, R., et. al.,,_Design Report for an Indirectly Cooled 3-m Diameter

Superconducting Solenoid for the Fermilab Collider Detector Facility
Fermilab TM-1135, October, 1982.




Appendix A

Calculation of Radial Decentering Force
from a 2-d TFinite Element Model

The object of the calculation is to represent the phi variation of radial B-
field component with an axisymmetric model. Since the model will be by
nature invariant in phi, it is necessary to use at least two models. The
simplest approach might be to perform one run with a coil radius of r_+d,
and another run with a coil radius of o where r is the actual coil radius
and d is the desired decentering. Fach run produces a set of Lorentz forces
(in N/rad) and the assumption can be made that the difference in these forces
represents the attraction to (or repulsion from) the iron at the phi
corresponding to the closest iron/coil distance. Reversing the sign on these
forces will give the repulsion from (or attraction to) the iron at a phi 180

degrees away. The forces in between can then be calculated by interpolating
between the two extremes in some rational way.

The primary problem with the approach of inecreasing coil radius to
represent decentering is that the act of increasing radius will by itself increase
force. This is apparent from the magnetic pressure analogy applied to the
inner coil surface. The hoop stress in the coil is
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Any increase in r_ increases S, regardless of any iron effects, assuming the
change in B-field is small. Also, although intuition indicates that the desired
decentering forces result from the variation of axial field component near the
end of the coil, the method of increasing coil radius will produce higher forces
all along the solenoid length. The results can be very large (conservative)
decentering forces. The experience with this work was that the effects of
reentrant iron were in fact nearly washed out by the large decentering forces
calculated in this way,
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where ?m is the magnetic pressure, B/ {2*1;111@(}}9 and t is th

It is more accurate and intuitively pleasing to move the iron boundary
instead of the coil to represent the decentered coil. The two sets of forces are
then used as previously stated to find the total decentering.



The selection of an interpolation scheme was somewhat arbitrary. Referring
to Fig. Al, the radial force acting on the coil can be assumed to be inversely
proportional to the square of the distance d. The force difference from the
finite element runs Fp =~ (N/rad) is assumed to exist only at theta = 0 and d
= 0. At theta = 0 and d = 0.02 m, the force difference is assumed to be
zero. This pattern is assumed to exist in all four quadrants of the cross
section, with the signs of the force difference reversed in the third and fourth
quadrant. Then, at any theta, the force difference in the first quadrant is

F = Py (0.02-d)%in(theta)/(0.02)

The distance d can be expressed in terms of r, as shown in the figure.
This expression is numerically integrated in the first quadrant, then multiplied
by four to obtain the total radial force. Note that this method does not

congider the axial distribution of the force difference, but sums the forece
difference in all elements along the axis at & given theta.



Table 1.
Radial Force Comparison

Model Radial Force
(tonnes/2 cm)

DSP - 3d (coarse) 3.3

V - 3d (coarse) 11.0
DSP - 3d (refined) 12.1
V - 3d (refined) 11.1
DSP - 3d (total energy) 5.4
V - 3d (total energy) 20.1
YV __2d approximate 11.1

Table I

Axial and Radial Decentering Forces
for Four Generic Cases
Case Axial Decentering Radial Decentering
Force (tonmnes/in) Force (tonnes/in)
0 206
2 43 <1

7 66 200
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