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Introduction

The solenoid collaboration meeting st ANL on Nov, 16-17, 1980 selected
four solenoid geometries for further study. These geometries, and the
abbreviations used in this report, are:

Lo FTD-A, Iron Return Solenocid, r==1.8 m, central field = 2.0 T, l=14 m.
2. FTD-B, Iron Return Solenoid, r=2.1 m, central field = 1.8 T, =14 m.

3. ACS-A, Alr Core Solenoid,

8 m, central field =

1o sux the magnetic field distributio

Id
thicknesses for these 1‘

In addition to the four geometries above, which assumed uniform current
density along the length of the solencid, an additional geometry, called ACS «,
Was @zmiyzzg@d which used the air core geometry ACS-A and two individual
current densities to produce a more uniform field. The ACS-A and ACS.C
results were used to caleulate the shear stress between the conductor and
support cylindes.

Finite Flement Models

The solenoids, air and iron were modeled with the ANSYS STIF13
multifield solid axisymimetric finite element. A b-h curve for 1020 steel was
used. The support cylinder was modeled with STIF61 conjcal shell elements.
The cylinder was coupled in displacement with the conductor to simulate the

epoxy bond between these structures. Figs. 1 and 2 show typical meshes for
the FTD and ACS models.



The model ACS-A was modified for two current demsities (ACS-C) in an
effort to produce a more uniform axial field. Closed form solenoid calculations
(see Appendix A) were used to find two current densities (one over the
innermost 6 m and another over the two outermost 1 m lengths) which
produced a central field of 2 T and a field at the solenoid ends of 2 T.

Results and Discugsion

Figs. 3 and 4 show flux plots typical of the FTD and acs geometries.
Table I summarizes the axial and hoop electromagnetic forces. The axial force
is calculated from J X B and summed over the coil: The hoop foree is
calulated based on the maximum hoop stress in the conductor, and is
expressed as Newtons per axial length of coil.

Tables II and III summarize the following quantities for each model for
5000 A and 10000 A, respectively:

1. The total inductance, caleulated by ANSYS from the magnetic solution.

2. %, the radial 64& ckness of conductor stabilizer based on adiabatic quench
characteristics.\"

L the or the conductor }
cylinder éﬁal%“é 3%7@ \T/mm ( and 9200 N/em
?:”@Sp@”ﬁﬁf’@}yﬂ "
4. fig,f? the total radiation length of the conductor/support cylinder in the

The tables show that for both the small diameter (1.8 m) and large
diameter (2.1 m) designs, the air core solenoid design results in a thinner
conductor in terms of radiation lengths through the radial direction of the
conductor /support cylinder assembly. The axial forces on the ACS models are
much larger than those of the FTD models, as expected.

The line integral of the cross product of the field vector with the position
vector along a ray extending from the center of the solenoid to the current
sheet is a measure of the phi bending power of the field for high momentum
particles. This integral, called Bdl, is plotted in Figs. 5-8 as a function of



pseudorapidity (defined as -In*tan(theta/2) where theta is the angle of the ray
with the longitudinal solenoid axis). The most uniform Bdl is found for the
FTD models, due to their more uniform axial field. Another measure of field
uniformity is the variation of the axial component of the B-field at a constant
radius as a function of pseudorapidity. Figs. 9-12 show this variation.

The axial component of the B-field for ACS-C is shown in Fig. 13 and
verifies that the predicted 2 T field at the center and ends was acheived,
although accompanied by a large increase in field just inside the end. Fig. 14
compazes the Bdl integrals for the ACS-A and ACS-C geometries, showing the
considerable improvement in the Bdl for the ACS-C. The large increase in B-
field near the end of the magnet is probably not practical, and future work

will look at using three different current demsities in an effort to reduce this
effect.

The ACS-A and ACS-C geometries were used to provide conductor force
input for a refined structural model of the conductor and support cylinder.
The resulting shear stress distributions between the coil stabilizer and the
support cylinder are shown in Figs. 15 and 16. It is clear that
current density approach will increasse shear stress, although the maximum
numbers here are thought to be reasonable working stresses for the epoxy
bond, and there is eviderx

the two

e from ongoing

work that

more refined analysis

will find the stresses to be considerably smaller calculated herve.

The ACS models produce the thinnest radial designs, as anticipated,
primarily due to their smaller length and hence smaller inductance, which
i vl 9

congidered in the calorimetry design. The ACS can be built with a current
density graded along it’s length to produce a more uniform field, although this
will increase the axial forces on the conductor and the shear stress between

the conductor and support cylinder.
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Table 1. Sun

Model

FTD-A

ACS-A

ACS-B

nary of Magnetic Forece and
Shear Stress Results

Hoop

e Force

(N) (N/cm)
5.07(10%) 2.88(10%)

4.18(10 2.42(10%)

2.96(10%)
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2.58(10%)

Table II. Sumomary of Inductance and Cofl
and Support Cylinder Thickness for 5000 A
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Table III. Summary of Inductance and Coil
and Support Cylinder Thickness for 10000 A

Model Inductance b bec Lf
() (cm) (c)

FTD-A 4.53 5.04 1.12 0.68

FTD-B 4.46 4,16 0.97 0.67

ACS-A 2.55 4.04 1.60 0.63

ACS-B 2.60 3.58 1.33 0.54
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3. Wemnd ¢
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